Shape Change Through Programmable Stiffness

نویسندگان

  • Michael McEvoy
  • Nikolaus Correll
چکیده

We present a composite material with embedded sensing and actuation that can perform permanent shape changes by temporarily varying its stiffness and applying an external moment. Varying stiffness is a complementary approach to actuator-chain based approaches that can be accomplished using a large variety of means ranging from heat, electric field or vacuum. A polycaprolactone (PCL) bar provides stiffness at room temperature. Heating elements and thermistors are distributed along the bar so that local regions can be tuned to a specific temperature/stiffness. Applying an external moment using two tendon actuators then lets the material snap into a desired shape. We describe the composite structure, the principles behind shape change using variable stiffness control, and forward and inverse kinematics of the system. We present experimental results using a 5-element bar that can assume different global conformations using two simple actuators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Material Transformation Designing Shape Changing Interfaces Enabled by Programmable Material Anisotropy

This thesis takes a material perspective on designing transformable interfaces. The structure of material and mechanical properties such as stiffness, can determine not only its static performances, but also, with the help of external forces, support dynamic shape change. By encoding structural or stiffness distribution in the actuated materials, we can partially offload the shape-changing cont...

متن کامل

Designing Shape Changing Interfaces Enabled by Programmable Material Anisotropy

This thesis takes a material perspective on designing transformable interfaces. The structure of material and mechanical properties such as stiffness, can determine not only its static performances, but also, with the help of external forces, support dynamic shape change. By encoding structural or stiffness distribution in the actuated materials, we can partially offload the shape-changing cont...

متن کامل

Jamming user interfaces: Programmable particle stiffness and sensing for malleable and shape-changing devices Citation

Malleable and organic user interfaces have the potential to enable radically new forms of interactions and expressiveness through flexible, free-form and computationally controlled shapes and displays. This work, specifically focuses on particle jamming as a simple, effective method for flexible, shape-changing user interfaces where programmatic control of material stiffness enables haptic feed...

متن کامل

Methods for evaluating changes in cartilage stiffness following electromechanical reshaping

One component of several otolaryngological surgeries is the reshaping of cartilage. Several previous studies have demonstrated the efficient achievement of this procedure through electromechanical reshaping (EMR), a technique that involves the direct application of voltage to cartilage mechanically deformed in a jig. Two main parameters, voltage and application time, may be varied to achieve va...

متن کامل

Force sensor utilizing stiffness change of shape-memory polymer based on temperature

In this study, we propose a force sensor using a shape-memory polymer (SMP) whose stiffness varies according to the temperature. An SMP can be deformed above its glass transition temperature (Tg) by applying a small load. A deformed SMP maintains its shape when cooled below Tg and returns to its predefined shape when subsequently heated above Tg. The reversible change in the elastic modulus bet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014